2020年1月24日,中国农业科学院蔬菜花卉研究所甘蓝青花菜研究团队在期刊genes上发表了题为“Genome-Wide Identification, Expression Profile of the TIFY Gene Family in Brassica oleracea var. capitata, and Their Divergent Response to V arious Pathogen Infections and Phytohormone T reatments”的论文。论文第一作者为刘星博士和赵存保硕士(现为在读博士),通讯作者为方智远院士和吕红豪研究员。
TIFY是一个保守基序为TIF[F/Y]XG的植物特有基因家族,在植物的各种生物学过程中发挥着重要作用。在甘蓝基因组中共鉴定出36个TIFY基因,根据它们的保守基序分为JaZ(22个基因)、TIFY(7个基因)、ZML(5个基因)和PPD(2个基因)亚家族,这些基因不均匀地分布在9条不同长度的染色体上。通过对拟南芥和甘蓝蛋白的系统发育分析,得到10个分支。这些TIFY基因的表达具有器官特异性,其中13个Jaz基因和2个Ppd基因分别在根和叶中表达最高。更重要的是,JAZ对不同的病原体感染和不同的植物激素处理表现出不同的反应。与感病系相比,大多数JAZ在感染根肿病菌后被激活,而在尖孢镰刀菌或野油菜黄单胞菌感染后,抗性品系中既有诱导的JAZ也有抑制的JAZ,这表明它们在抗病或感病中的作用可能是不同的。此外,在MeJA处理后,JAZ的表达均上调,但在SA/ET处理后,JAZ的表达大多下调。综上所述,这些结果有助于我们理解tify基因家族,揭示JAZ可能在植物激素串扰和植物防御中发挥关键和不同的作用。
Figure 1. Distribution of TIFY genes on B. oleracea chromosomes. Thirty-six TIFY genes (rename and gene locus ID) are shown on the right of each chromosome. Gene positions and chromosome size can be measured using the scale on the left of the figure in mega bases (bp).
Figure 2. Duplication of the TIFY family genes in B. oleracea. The duplicated gene pairs are joined by
grey lines.
Figure 3. Gene structures (A) and motifs (B) of 36 TIFY genes identified in B. oleracea. UTRs and exons are represented by green and yellow boxes respectively , and introns are represented by grey lines, the length of gene structures can be measured using the scale on the lower in mega bases (bp) (A). Boxes with different colors indicate conserved motifs, and the length of motifs in each protein is shown proportionally and can be measured using the scale on the lower in amino acids (aa) (B).
Figure 4. Phylogenetic tree of TIFY genes from B. olearacea, B. rapa, and A. thaliana. The proteins from each species are labeled with different graphics and colors (red star: B. olearacea, pink circle: B. rapa, blue triangle: A. thaliana). The ten groups with different colors represent ten clades. The circles with different colors at the nodes represent bootstrap percentage values (grey: 0–40, yellow: 41–80, red: 81–100) from 1000 replications.
Figure 5. Heat map representation and hierarchical clustering of cabbage TIFY gene expression levels across roots, callus, siliques, stems, leaves, buds, and flowers. Log2 transformed values were used to generate the color-coded heatmap, and the color scale with red and blue represent high and low values, respectively , color scale from −2.0 to 2.5.
Figure 6. Heat map of cabbage JAZ genes suffering from P . brassicae, F . oxysporum, and X. campestris. (A) expression profile of JAZs after P . brassicae inoculation; (B) expression profile of JAZs F . oxysporum inoculation; (C) expression profile of JAZs after X. campestris inoculation; R: resistant line, S: susceptible line. Log2 transformed values were used to generate the color-coded heatmap, and the color scale with red and blue represent high and low values, respectively , color scale from −1.5 to 1.5.
Figure 7. The relative expression of cabbage JAZ genes in the control and exogenous MeJA, SA,
and ethylene treatments. Relative expression of JAZ genes was analysed by quantitative real-time
qPCR using cabbage actin as a control. Error bars indicate standard deviation, and asterisks indicate
significant differences between the control and phytohormone treatment, * p < 0.05, ** p < 0.01.
Figure 8. Transient expression of BoJAZ-GFP fusion proteins in tobacco cells. Bars, 25 µm.