2021年12月8日,中国农业科学院蔬菜花卉研究所甘蓝青花菜团队在期刊International Journal of Molecular Sciences(2023 IF=5.6)上发表了名为Organelle Comparative Genome Analysis Reveals Novel Alloplasmic Male Sterility with orf112 in Brassica oleracea L.的论文。
甘蓝Ogura CMS(胞质不育系)是通过甘蓝和萝卜的种间杂交或者原生质体融合产生的雄性不育系。本文通过对Ogura CMS和其保持系的细胞器基因组进行测序组装和比较,发现Ogura CMS的叶绿体基因组完全来自于甘蓝,而线粒体基因组来源于甘蓝和萝卜的线粒体基因组的重组。在Ogura CMS的线粒体基因组中发现了9个片段来自于萝卜线粒体基因组,占线粒体基因组的13.84%。根据这9个片段的差异开发了32对异源标记,从305份材料中筛选了1个异源胞质较少的不育系,将其命名为Bel CMS。Bel CMS的线粒体异源基因组只占8.94%,远低于Ogura CMS,更重要的是,在Bel CMS中,Orf138被Orf112取代,Orf112缺失了78个碱基,而且Bel CMS表现为完全雄性不育。田间表型表明,Orf112是稳定的不育系,和Orf138相比,能显著减少花期死蕾现象。
Figure 1. Chloroplast genome maps of normal-type (A) and Ogura-type (B) cabbage. The intraloop genes are shown with a clockwise transcription direction, while the extraloop genes are shown with the opposite. The different functional genes are shown in different colors. The gray histogram shows the GC content, and the gray line in the middle represents the 50% threshold line
Figure 2. Mitochondrial genome maps of normal-type (A) and Ogura-type (B) cabbage. Genes with names inside the circle are transcribed clockwise. Genes with names outside the circle are transcribed counterclockwise. The colors of the genes denote the functions of the gene products.
gure 3. Synteny analysis of the mitochondrial genomes. (A) Normal‐type cabbage on the X‐axis, plotted against the
Ogura‐type cabbage on the Y‐axis. (B) Ogura‐type radish on the X‐axis, plotted against the Ogura‐type cabbage on the Y‐
axis. (C) Validation of structural variations between normal‐ and Ogura‐type cabbage mtDNA. 3‐1: normal‐type cabbage
19‐3‐1; 3‐2: Ogura‐type cabbage 19‐3‐2; P1~P15: Primers 1~Primers 15.
Figure 3. Synteny analysis of the mitochondrial genomes. (A) Normal-type cabbage on the X-axis, plotted against the Ogura-type cabbage on the Y-axis. (B) Ogura-type radish on the X-axis, plotted against the Ogura-type cabbage on the Y-axis. (C) Validation of structural variations between normal- and Ogura-type cabbage mtDNA. 3-1: normal-type cabbage19-3-1; 3-2: Ogura-type cabbage 19-3-2; P1~P15: Primers 1~Primers 15.
Figure 4. Distribution of alien cytoplasm in 0gura-type cabbage. (A) Syntenic comparison among 19-3-1, 19-3-2 andNC 018551 mtDNAs.(B) Detection results of alloplasmic markers. 19-3-1: Normal-type cabbage; 19-3-2: 0gura-typecabbage; NC_018551: Ogura-type radish; 19-2202: Bel CMS cabbage; R1~R9: Region 1~Region 9.
Figure 5. Mitochondrial genome map of the Bel CMS cabbage. Genes with names inside the circle are transcribed clockwise. Cenes with names outside the circle are transcribed counter clockwise. The colors of the genes denote the functions of the gene products.
Figure 6. Syntenic comparison among 19-3-1, 19-2202 and NC_018551 mtDNAs. (A,B) Normal-type
cabbage and Ogura-type radish on the X-axis, plotted against the Bel CMS cabbage on the Y-axis.
(C) Distribution of alien cytoplasm in the Bel CMS mitochondrial genome. 19-3-1: Normal-type
cabbage; 19-2202: Bel CMS cabbage. NC_018551: Ogura-type radish.
Figure 7. Phenotypic observations of Ogura CMS and Bel CMS cabbage under field conditions.
(A,B) Flower buds of Ogura CMS (A) and Bel CMS (B) at the early flowering stage; (C) Floral organs
between Ogura CMS (left) and Bel CMS (right); (D–F) Pollen staining observation in normal-type
(D), Ogura CMS (E) and Bel CMS (F) cabbage.
Figure 8. Difference of three homologous sterility genes. (A) Sequence alignment of three homologous sterility genes.(B) Amplification results of the molecular marker ‘OKB’. 1~3: Ogura CMS; 4~5: Kos CMS; 7~9: Bel CMS; 10~12: fertile line;NTC: no template control